Liv Pur Nutritional Supplements

Wednesday, September 27, 2017

Radio Tuesday: eating healthy, meal planning, arthritis, posture, and cooking in bulk.



Radio Tuesday: Today, we discussed eating healthy, meal planning, 
arthritis, posture, and cooking in bulk.

Eric Dempsey
MS, NASM Fitness Nutrition Specialist

Tuesday, September 19, 2017

Radio Tuesday: Cardio, resistance training, isometric training and globo gym.



Radio Tuesday: In today's episode, we discussed cardio and 
resistance training, isometric training, intermittent fasting, and
observations from globo gym.

Eric Dempsey
MS, NASM Specialist in Fitness Nutrition

Monday, September 18, 2017

What are Isometric Training and Contractions?


























There are three main types of muscular contraction associated with strength and conditioning training. These types of contractions are concentric, eccentric and isometric. Each type of contraction has a place in training, and there are positive and negative aspects for each. While eccentric contractions provide the highest amount of tension during execution, isometric contractions come in second place, with concentric contractions trailing at third place (Bompa & Buzzichelli, 2015).

There are numerous training programs that are designed around each of the three types of contractions. Numerous research studies have analyzed many aspects of each type of contraction. Much debate has arisen over which type of training and contractions are the best. The data shows that each contraction type has strengths and limitations. A well rounded program should maximize the benefits of each, while avoiding the limitations. Isometric contractions are usually used the least, and are often misunderstood. The research shows that isometric contractions can be used to great benefit when applied properly (Bompa & Buzzichelli, 2015).

The concept behind isometric training revolves around two main methods. The first method is achieving an isometric contraction, by trying to lift a heavy weight that is beyond the muscle’s capability. The second method focuses on trying to move an inanimate or unmovable object. Both techniques result in a static contraction, where the length of the muscle does not change. Isometric training has been around for quite some time. One of the popular strongmen of older times was Alexander Zass. He was a prisoner of war during World War I. During his captivity, he worked on his strength by performing isometric contractions, against the steel bars and chains of his cell. He later went on to sell his isometric training program through mail order courses (Read, 2015).

Some of the first recorded research studies that outlined the benefits of isometric training, occurred in the 1950’s and 1960’s. During this time period, isometric training gained in popularity, and numerous training programs were created. Programs were designed for athletes, fighters, bodybuilders, and strongmen. Programs were even developed for the average, non-athletic citizen (Raizis, 2017).

While isometric training attained its peak in popularity during the 1960’s, it soon faded from the spotlight, and was replaced by many other fitness fads and trends. Some notable fitness icons that promoted isometric training included the great martial arts star, Bruce Lee, and fitness guru, Jack Lalanne. Bruce Lee was well known for a unique isometric exercise, where he attempted to move a steel bar, which was permanently attached to a squat rack. While he obviously never moved the steel bar, he did become so strong, that he put a curved bend in it (Read, 2015).

Isometric training has little functional use, as it is stationary in nature. But it does provide considerable gains in strength. It is also very effective for trunk, core, and abdominal stabilization, and strength. Positive results in rehabilitation therapy have also been shown with isometric training. Because the nature of the contraction is stationary, people who are recovering from skeletal, and bone related injuries can benefit from isometric training (Raizis, 2017).

Some of the other benefits of isometric training include the minimal time, equipment, and space required to perform it. Isometric training is also capable of considerable motor unit recruitment and activation. Many believe that isometric training is one of the more superior methods of motor unit recruitment. The earlier research studies showed that a single session of isometric training per day, at seventy five percent of maximal output, over ten weeks, raised strength levels by up to five percent, per week. Other research concluded that isometric training caused isometric strength gains to continue, even after the training protocol had concluded. Some of the studies outlined that isometric contractions of only six seconds could cause increases in strength, equal to a much larger number of dynamic isotonic contractions. The studies also suggested that in certain circumstances, ten minutes of isometric training could be the equivalent of sixty minutes of regular resistance training (Barry, 2015).

No special equipment is need for isometric training. During the 1960’s, when isometric training was very popular, many companies developed training devices specifically for isometric contractions. This never took off and isometric specific equipment quickly disappeared. Today, isometric training can utilize existing equipment, or body weight. Standard squat racks with pins and safety bars, can be utilized in a number of ways, with common items such as barbells. There are dozens of ways to perform isometric training with body weight alone. An old exercise that was popular once upon a time, simply had people put their hands together and apply force, for a period of time. Large spaces are not required for isometric training. It can be done in a standing, seated, prone, or supine position (Barry, 2015).

Isometric training does have its limitations. When isometric training is performed as the main training method, muscular elasticity, coordination and speed can be compromised. Critics of isometric training often say that this method of training only produces strength gains at specific joint angles, and is therefore limited. Other research has shown that this is not entirely accurate. Isometric training has been shown to produce strength increases for up to fifteen degrees, on each side of the joint angle that was trained (Kubo, Ishigaki, & Ikebukuro, 2017).

With isometric training, most people do not experience the common post workout fatigue, and soreness that accompanies regular resistance training. However, isometric training is said to produce a very deceptive, central nervous system fatigue, which can negatively impact performance. For this reason, supporters of isometric training recommend that training sessions be limited to about ten minutes. Adequate recovery time is just as important with isometric training, as it is with other methods (Kubo, Ishigaki, & Ikebukuro, 2017).

There are certain health risks associated with isometric training. Isometric training is not recommended for people with heart, blood pressure, or circulation problems. During isometric contractions, blood flow to the muscle is temporarily halted, which increases blood pressure. This could be a serious problem for certain people. Isometric training also dramatically increases intrathoracic pressure as contractions are conducted while breathing is momentarily suspended. This increase in intrathoracic pressure could cause medical concerns for people with certain conditions. Medical clearance is recommended for those with blood pressure related conditions, before beginning any isometric training. Some current research does indicate that isometric training, performed under certain conditions, could potentially help to lower blood pressure (Millar, McGowan, Cornelissen, Araujo, & Swaine, 2014).

The recommended method of incorporating isometric training, into a modern strength and conditioning program, uses the functional isometric contraction. This method is used in conjunction with weight training. Significant strength gains can be achieved by using functional isometric contractions. These would be utilized throughout various joint angles, or sticking points, in Olympic weightlifting, powerlifting and other resistance exercises. Combining isotonic and isometric training together, in a balanced strength program, can provide optimal results for the athlete (Millar, McGowan, Cornelissen, Araujo, & Swaine, 2014).

References:

Barry, T. (2015). Isometric training. Westside Barbell. Retrieved from https://www.westside-barbell.com/blogs/2015-articles/isometric-training

Bompa, T.O., & Buzzichelli, C.A. (2015). Periodization training for sports (3rd ed.). Champaign, IL: Human Kinetics.

Kubo, K., Ishigaki, T., & Ikebukuro, T. (2017). Effects of plyometric and isometric training on muscle and tendon stiffness in vivo. Physiological Reports. Retrieved from http://physreports.physiology.org/content/5/15/e13374

Millar, P., McGowan, C., Cornelissen, V., Araujo, C., & Swaine, I. (2014). Evidence for the role of isometric exercise training in reducing blood pressure: Potential mechanisms and future directions. Sports Medicine. Retrieved from https://link.springer.com/article/10.1007/s40279-013-0118-x

Raizis, A. (2017). What Are the Benefits of Isometric Exercise? Live Strong. Retrieved from http://www.livestrong.com/article/473052-what-are-the-benefits-of-isometric-exercise/

Read, A. (2015). Isometric training: What it is and how to do it correctly. Breaking Muscle. Retrieved from https://breakingmuscle.com/fitness/isometric-training-what-it-is-and-how-to-do-it-correctly

Eric Dempsey
MS, ISSA Master Trainer


Wednesday, September 6, 2017

Radio Tuesday: HIIT, Grilling, Calories, and Strength



Today, we covered benefits of HIIT, overestimating calorie intake, grilling concerns, and the importance of strength training.

Also check out the new Chaplain Paul Voorhees Ministry website.

Eric Dempsey
MS, ISSA Master Trainer
Dempseys Resolution Fitness